单位根反演学习笔记

mm 次单位根 ωm\omega_mωmm=1\omega_m^m=11im\forall 1\le i\le mωmi\omega_{m}^i 互不相同。

单位根反演:

[mx]=1mi=1mωmix(1)[xr(modm)]=1mi=1mωmi(xr)(2)[m|x]=\frac{1}{m}\sum\limits_{i=1}^m\omega_m^{ix}\qquad(1)\\ [x\equiv r\pmod m]=\frac{1}{m}\sum\limits_{i=1}^m\omega_m^{i(x-r)}\qquad(2)

证明:

(1)(1) 易得 (2)(2),下面证明 (1)(1)

显然若 mxm|x 则相当于 1mi=1m1ixm=1\frac{1}{m}\sum\limits_{i=1}^m 1^{\frac{ix}{m}}=1

mxm\nmid x,则相当于 1mi=1m(ωmx)i\frac{1}{m}\sum\limits_{i=1}^m(\omega_m^{x})^i,此时 ωmx=1\omega_m^x\not=1,运用等比数列求和公式得 1m×ωmxωmxωmxm1ωmx=1m×ωmxωmx1ωmx=0\frac{1}{m}\times \frac{\omega_m^x-\omega_m^x\omega_m^{xm}}{1-\omega_m^x}=\frac{1}{m}\times \frac{\omega_m^x-\omega_m^x}{1-\omega_m^x}=0

例题:

i=0n[ir(modm)](ni)=1mi=0n(ni)j=1mωmj(ir)=1mj=1m1ωmjri=0n(ni)ωmji=1mj=1m1ωmjr(ωmj+1)n\begin{aligned} \sum\limits_{i=0}^n [i\equiv r\pmod m]\binom{n}{i}&=\frac{1}{m}\sum\limits_{i=0}^n \binom{n}{i}\sum\limits_{j=1}^m \omega_m^{j(i-r)}\\&=\frac{1}{m}\sum\limits_{j=1}^m\frac{1}{\omega_m^{jr}}\sum\limits_{i=0}^n\binom{n}{i}\omega_m^{ji}\\&=\frac{1}{m}\sum\limits_{j=1}^m\frac{1}{\omega_m^{jr}}(\omega_m^j+1)^n \end{aligned}